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The regular perturbation method (the small-parameter method) is developed in order to investigate the 

dynamics of weakly inhomogeneous rods with arbitrary distributed loads and boundary conditions of 

various types leading to self-conjugate boundary-value problems. The approach rests on the introduction of 

a perturbed argument, namely, the Euler variable, and a suitable representation of the eigenfunctions. It 

enables one to carry out uniform constructions of the basis and the eigenvalues, as well as the frequencies 

with any required accuracy in terms of the small parameter using quadratures of known functions. To 

illustrate the effectiveness, an example involving inhomogeneous rods with hinged left-hand ends and free 

right-hand ends and with box-shaped and circular cross-sections whose dimensions depend linearly on the 

coordinate are investigated and computed. 

1. FORMULATION OF THE PROBLEM 

CONTROLLED planar motions of an elastic rod undergoing transverse bending deformations are 

considered. Longitudinal extension will be neglected. It is assumed that the neutral line of the 
unstrained rod is straight and the elastic strains are small, i.e. the motion of the rod can be described 

+Prikl. Mat. Mekh. Vol. 56, No. 3, pp. 452-464, 1992. 
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in the framework of the linear theory of thin elastic rods [ 1, 21. It is assumed that the inertial and 
stiffness characteristics are constant with time and the conditions of motion are such that the 
dynamic equation for the cross-sections (the state equation) has the form 

t’(.‘)“““- (0(2)~“)“+W’(/. .r). u=u(f, -t). 

0-cs<l. E[O. T] (1.1) 

Here u(t, X) is the transverse displacement of the neutral line with Euler coordinate x at time t, 
~(t, X) is the external action, which is a known, sufficiently smooth function for all x E [O, 11;) and 1 
is the length of the rod, which is assumed to be constant. The linear density p and bending stiffness u 
are assumed to be stationary (i.e. independent of t) sufficiently smooth functions of x that satisfy the 
conditions 

ocp m,,,~p(X)+Wr <m, O<om,“<iJ(z)GYmpI<~, OGsGcl (1.2) 

where the bounds of the intervals of variation are sufficiently close to one another (see below). 
We adopt the standard form of the boundary conditions, i.e. the values of u(t, x) at x = 0 and 

x = I, leading to a self-conjugate boundary-value problem [3, 41. It is assumed that the following 
simple inhomogeneous conditions hold for the values of tE [0, T] under consideration. 

1. Clamping (rigid constant) of the left end (x = 0) and/or the right end (x = I) of the rod: 

u(t. z) IX=-0. r=So. l(l). u’(t, x) IX=,. ,=Ko, IO) (1.3) 

2. Free left end (x = 0) and/or right end (x = I) of the rod: 

- [o(r)u”(t, s)l ].=o. r=Ma.tU). 

- [O(Z)U”(l, z)l’]X=cl. r=Po. 10) 

3. Hinged attachment of the left end (x = 0) and/or the right end (x = I) of the rod: 

u(t, x) ],=o. ,=S,,r(t), -Io(s)u”(t. .r)] ]X=,. ,=MLl. I(t) 

4. Free left end (x = 0) and/or right end (x = I) of the rod with fixed tangent: 

u’(t, 5)]X=o,I=K”.&). -IU(5)U”(& ~)I’].+=&.&) 

(1.4) 

(1.5) 

(1.6) 

The mathematical meaning of the sufficiently smooth functions of t (tE [0, T]) introduced in 
(1.3)-(1.6) is clear. They characterize both the kinematic actions: ,9,,,(t) is the prescribed 
displacement and K,,,(t) is the prescribed direction of the tangent line, and the dynamic actions: 
A&(t) is the applied external moment of forces orthogonal to the neutral line and P,,,(t) is the 
external shear force orthogonal to that line. The above functions, as well as the distributed external 
action W(t, x) in (1. l), can include perturbations and control actions of a kinematic or dynamic 
nature [l, 2,5]. For simplicity, they are assumed to be prescribed, i.e. independent of the unknown 
function u (t, x) to be determined or its derivatives at x = 0,l. We remark that, on the basis of 12 
forms of the boundary conditions (1.3)-(1.6) at one or both ends of the rod, we can state 
N= n+n(n-1)/2 = n(n+1)/2 ( in our case II = 4 and N = 10) forms the boundary conditions for 
the whole rod, i.e. 10 forms of distinct boundary value problems. Since the rod is inhomogeneous, 
n* different solutions are possible. Each of the corresponding boundary value problems is 
self-conjugate, which can be established directly on the basis of the definition [3, 4, 6, 71. Under 
external actions of a certain class, the solutions of the problems will belong to the corresponding 
class provided the initial conditions are specified. The latter can be taken in the standard form for 
t= 0: 

u(0. s)=fo(x), u’(0, t)=gO(5) (1.7) 

If the control problem is posed, then suitable terminal conditions can also be given for t = T: 

u(T, s)=f(s). fI’(T. x)-g’(s) (13) 

The functions f”, r(x) and g’,‘(x) must be sufficiently smooth, or, more precisely, they must 
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belong to a certain class of smoothness in order that the solution u (t, x) to be determined exist in the 
required class [3,4]. 

A constructive solution of the problems stated can be obtained by the method of separation of 
variables (the Fourier method) as an infinite sum of un(t, x) = 0, (t)Xn (x), where n = 0, +l, f2, 
. . .> i.e. as a series in terms of the system of eigenfunctions {Xn(x)}, which are orthogonal with 
weight p(x) and form a basis. The boundary-value problems for the eigenvalues and eigenfunctions 
corresponding to the boundary-value problems (l.l), (1.3)-(1.6) for x = 0 and/or x = 1 have the 
form 

(ax”)‘‘-)l‘pX=O, .O<x<l, k=const (1.9) 

1) X=X’=O, 2) aX”=(oX”)‘=0 

3) X=aX”=O, 4) x’=(ux”)‘=o (x=0, x=-l) 

The solutions of (1.9) are known for constant p and u [l-3, 51. The eigenfunctions X,,(x) can be 
found in the form of combinations of trigonometric and hyperbolic sine and cosine functions, and 
the real eigenvalues A, can be found as the roots of the transcendental characteristic equations. By 
symmetry, it is then sufficient to restrict ourselves to the values of X,(x) and A, for n = 0, 1,2, . . . , 
i.e. not to consider it = -1, -2, . . 

In the more general case of an inhomogeneous rod with p and u depending on x, the eigenvalues 
and eigenfunctions can be approximately determined using constructive algorithms of the perturba- 
tion method if p(x)=po and u(x)=uo, where p. and u. are positive constants. To make it 
convenient to use the perturbation method developed below, we introduce a small numerical 
parameter E such that 0~ E =G 1, which characterizes this closeness. Taking (1.2) into account, we 
write down the identifies 

p(x)=~%]i+E~(x, e)l, u(x)=uo[l+ec(x, E)] (1.10) 

eb= (Aplp~) (p-po) lAp, ec= (Ado,) (u-uo)/Au 

Ap=(pm -pm1.)/2, Au=(u,,,-0,,,)/2 

po=(pmx+pmln)/2, uo=(umsr+umrn)/2 

Assuming, for example, that ApIp - E and Au/a0 - E, where E is the small numerical parameter 
suchthat EE[O, EO] withO<Eo%I, by (1.10) wehave]S~Sland~c~~lforxE[O,I].Inthelimitas 
E+O we obtain self-conjugate boundary-value problems with constant characteristics p = p. and 
u = u. of the rod, the solutions of which can be constructed in the form of quadratures on the basis 
of the known systems of eigenvalues {X, (O)} and eigenfunctions {Xn(‘)}. We can set 1= p. = a0 = 1 
in (1.10). This can be achieved by setting x, = xl1 and A, = X(po/~o)1’4 and then suppressing the 
index * . The functions X, 6 and c can be transformed into functions of the new argument x, and the 
parameter A,. As a result, we obtain a set of 10 self-conjugate boundary-value problems containing 
one given parameter E such that O<E 4 1 (A(E) and X(x, E, A) are to be determined): 

((l+EC(X))X”)“-h4(l+eG(x))X=0, OCxCl (1.11) 

1) X=X’=O, 2) X”= ( (l+ec(x))X”)‘=O 

3) X=X”=O, 4) X’=( (1+ec(x))X”)‘=O (x=0, x--1) 

For E = 0 (the case of a homogeneous rod), the solutions of the boundary-value problems are 
known [ 1,2,4,5]. On the basis of these solutions one can construct the desired solutions u@)(t, x) of 
the original initial-value problems (1. l), (1.3)-(1.7) in t. For E > 0 the problem arises of the 
existence of solutions of the required class of smoothness and the construction of these solutions by 
the methods of perturbation theory [7-91. 

Thus, the problem arises of constructing the system of eigenvalues {A, (E)} and a complete system 
of functions {Xn(x, E)} orthogonal with weight (1 + &6(x)) with the required degree of accuracy in E 
uniform in rz as ( II 1 -+ 00. We remark (see [lo]) that direct substitution into (1.11) of the expansions 

h,(e)=A.,(O)+eh,“‘+. . .+e%,‘“‘+. . . 

X-(x, ~)=X,(~)(x)+eX,“‘(x)+. . .+e”X,‘L’(x)+. . . (1.12) 
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of E = 0 and X,, (x, E) in terms of the powers of E leads to “secular terms” of the form EW (p and q 

being natural numbers) due to the expression &X4F(_r)X, the smallness of which is doubtful for 
A-+ co. This fact is unsatisfactory both theoretically and in applications when such approximate 
expressions are used as a basis, since both the absolute and relative errors will increase without limit 
as n increases (n+ co). The class of boundary-value problems under consideration is much more 
difficult to study than in the case of the second-order differential equation in x considered in [lo]. 
However, the fundamental approaches [lo] leading to the regularization of the process of 
constructing {X,(x, E)} can be applied in the case being discussed. A constructive method of 
regularizing perturbed boundary-value problems can be proposed. Below we describe and discuss 
the algorithmic aspects of the problem and some questions concerned with the justification. From 
the point of view of functional analysis, an additional thorough investigation of the properties of the 
approximate basis is needed. 

2. TRANSFORMATION OF THE INDEPENDENT VARIABLE 

We propose a method which involves the introduction of the perturbed argument y and 
parameter v by means of transformation formulas that are close to identities [lo]. For y = y (x, E), 

we consider the following expression: 

y=y(z, e)=[z+ecp(s, e)] [l+ecp(l, e)]-‘=s+eg(G e). 

z=y+erl(5, e) 

cp(O, e)=g(O, a)=6(1, a)=rl(O, a)=q(l, e)=Q 

(2-I) 

cp (x, e) = \ 8 (2, e) dz, i3=e(x,e)-1+ II 1 + e6 69 ‘1*_1 = 
0 

1 + ec (4 > 1 

= (6 (5) - c W/4 + 0 (e) 

For sufficiently small E >O, Eqs (2.1) define a one-to-one relation between x and y with y = x for 
E = 0. Instead of A, which remains unknown for the time being, we introduce the following 
parameter: 

v--h(l+ecpl(a)), cp,(e)=cp(l, e) (2.2) 

The unknown function X to be determined can be converted to the form 

X=X(x. A, e)=Y(y, v, e)=Y (2.3) 

The differential equation (1.11) for the unknown function Y can be written as follows: 

Y’“-v’Y=e(A Y”‘+Sv”+CY’), O<y<l (2.4) 

1 -l- ecp, 38 

E 
’ 

A -= fl(y,e) e -2 i + ee - 1 + ef3 + 1 i- ec - 
II x=y+cq 

B = B(y,e)s- 

6ec’B’ 

+ (1 + e6) (i + ec) f 1 :Le II x=Vssrl 

C = C (y, e) s _ (* + e%)3 
[ 

2~~8” + de’ 
(1 + ee)’ em + e 1 + eO II x=v+crl 

e-w, e), t=y+eq, q=tl(y, e) 
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Equation (2.4) is defined if S(x) and c(x) are of class C3 for all x~[0, l]. We note that 
A = B = C = 0 if 6 and c are constant for all x E [0, 11. The boundary conditions l-4 in (1.11) can be 
transformed using the relation between x and y on the basis of the expressions for Xand Y and their 
derivatives: 

X(x, A, e)=Y(y, v, e), z=-y+eq(y, e) 

y=z+sg(s, e)=(s+erp(s, e)) (l+ecp(l, e))-’ 

A=v(/+eq(i, e))-’ 

X’=Y’(l+eO) (Ifeq,)” 
(2.5) 

X”- -Y”(l+et3)Z(l+ecp~)-‘+eY’0’(l+ecpt)-’ 

X”’ =Y”‘(i+e8)3(1+erpl)-3+3eY”8’(i+e9) (l+e(p,)-‘+ 

+e Y’W’( 1 fecp,) -’ 

Here the primes denote the derivatives with respect to the natural argument: X’ = dX/dx, 
= dWdx, Y’ = dY/dy, etc. Since y = 0 for x = 0 and y = 1 for x = 1 the boundary conditions 

Fi.11) for Xcan be reduced to the corresponding conditions for Y using (2.5): 

)‘=o, Y’--0, Y”(i+e@“( I+@) -z+EY’8’(i+E~,)-‘=o 

(l-ker) [ Y”‘( 1+ee)3( i+eq!i)-3+38Y”8’ (f+Ee) (l+erpl)-*+ 

+eY’O”(i+erp,)-‘]+ec’[Y”(l+eO)z(i+ecp,)’f+ 

+eY’0’( i+eqh)‘*J =O 

r=y=O v a=y=-l 

P-6) 

Hence the perturbed boundary-element problem (2.4)-(2.6) with variable coefficients, which is 
equivalent to (l.ll), has been constructed. First of all, it is required that the general solution of 
(2.4) be constructed. The application of regular perturbation methods (expansions or successive 
approximations in powers of the small parameter) does not lead to any secular terms. The perturbed 
differential equation (2.4) can be replaced by a suitable integro-differential equation. To solve the 
latter we propose the following recurrent scheme of the method of successive approximations 
suitable for all real values of v, 1 u ) < ~0: 

Y= Yco’-+eL[ Y] , L=l+D, Y’p+‘) (y, v, e) = 
=Y(“(y. V)+eL[Y”“‘] (2.7) 

3 

Y(O) (y, v) -= 
c 

CiOi (f/v. V). @)o, 2 (yq V) = (ch vy $- COS vy)/(ch v k, COS V) 

r=4 

cS,,,(y, v) =(sh vyzt sin vy)l(sh vf sin v). 

yqo, 11, p=o. 1, 2,. . * 

Here Y(“)(y, V) is the known general solution of the unperturbed equation (generating the 
solution) for (2.4) (for E = 0), ci7 i = 0, 1, 2, 3 being arbitrary constants. Its representation in the 
form (2.7) is taken to facilitate the passage to the limit as v-+0 and to ensure boundedness as I+-+ 01. 
The function Y(O) turns into a polynomial of the third order in y as v-0, since @i(y, 0) = y’. Thus 
Y(Q(y, 0) = c0 + ClY + C*Y2 + C3Y 3. For all real v, @i are uniformly bounded, since 0 4 y d 1 a 
Moreover, Q-+ 0 as [ v 1 + 00 for 0ay-c 1. In (2.7) I_, is an integro-differential operator, which is a 
consecutive combination of a third-order differential operator D in y and a Voltma-type integral 
operator I (in y) with difference kernel. LI is defined on the set of functions Y of class C3: 

F=F( y. e) --D[ Y] =D(y. e) [ Yl. ye (0, I] (2.8) 

de 
-I- B (YT e) dye 

d 
+ c (Y* e)dy 
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The elements F form a set of continuous functions to which to apply the integral operator I: 

Z=r[F]=l(y,v)~F]=.j:G(y-z.v)F(z,c)dz (2.9) 
0 

Uy, v)-(shvy-sinvy)/2v3, ~(0, 11, /vl(m, GxyV31, (~v)-+o 

G(0, v)==G’(O, v)=G”(O, v)=O. G”‘(0, v)=j 

The elements of Z forrn a set of functions of class C?. The difference kernel G has the 

fourth-order smoothing property, Since aj are analytic functions of y for all real u such that \ v I< co, 
the recurrent scheme (2.7) is well defined. We observe that the application of D to Y(‘)(y, v), 
YQ’(y,v, E), . . . ) Y@)(y,v, E), . . . leads to multipliers of order v3 as ( v (-+ ~0, which are cancelled 
when the operator 1 (\\Z\\ - \ shvy ) v-“) is applied. It is important to note that, according to (2.7), the 
application of the operator I given by (2.9) does not lead to an exponential increase in Y@‘(y, v, E) 
as 1 v I-_$ oc,, i.e. the functions y@) turn out to be bounded for y E [O, l] and 0 6 E < ~0 uniformly with 
respect to v such that ] v) < 00, E~>O being sufficiently small. Indeed, at the pth step the main term in 
the integrand of the exponential asymptotic form with respect to v has the form 

jsh v(y-z,)sh v(zo--2,). . . sh v(+i-z*)ch vz,/chvl (2.10) 

l>!l~Z,>Z,>. . .PZ,-,>z,>o, q-0, 1,. . . ,p 

or a form similar to this expression. The factors multiplying this term are uniformly bounded 
functions of z,, zl, . , . , zp and v, E. Analysis of the exponents of the expressions of the type (2.10) 
leads to the following quantities: 

Here the signs +, in front of each term are independent. As a result,we obtain 2@’ expressions for 
the first term under the modulus sign. The maximum value 1 u (y of the first modulus is attained for 
zk=~k_~.Hencewefindthat/vjy-~v~~OforO~y~1,i.e. Y@ )-+ 0 exponentially with respect to 
[v( for y<f, (Y(p)( -exp(-jvl(l-y)),andY=O(l)asv+oofory=lonly. 

Consider the recurrent procedure (2.7). By the linearity of L, we have 

yW1) = Y@) + ~,&‘]Y”‘], ti+l[Y]= L[L,‘[Y]J, LO = E, LO[Y] % Y (2.11) 
?? z 

For sufficiently small F ~0, EL is a contracting operator. On the basis of Banach’s theorem [6] it 
can be established that Eq. (2.7) has a unique solution, which can be obtained as the limit of the 
sequence (2.11) : 

lint YcPtt’ (2.12) 
PAW 

= y+ z y(O) + 2 e’L’ [Y(O)] s (E _ f@-l [Y(O) ] 

i=l 

For \E(-LE~, with co=[IL(j-‘, where the norm ljL]j of the bounded operator L can be 
constructively expressed in terms of the coefficients A, B, C, and the kernel G, the operator EL is 
contracting and the successive approximations (2.11) converge uniformly to the desired solution 
(2.12) of (2.7) and (2.4). 

We remark that if 0 and c are quadruply differentiable (see expressions (2.4) for A, B and C), 
then, using the integration-by-parts formula and the properties of the kernel G in (2.9), one can 
reduce (2.7) to an integral equation, whose terms, however, do not satisfy the uniform boundedness 
condition with respect to v. In the first-order approximation with respect to E [with an error O(a*)], 
when constructing the desired solution Y, it suffices oneself to expression (2.8) for D for e = 0, i.e. 
to take 

D(y, 0) ~Y~“‘]5~-2(38’+C’)Y(O”“- 
- (4Q”j-e”) y(~)“_c)“‘y(o)‘] Ix_ (2.13) 
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where Y(O) is a function known to within the choice of the coefficients c’ . Thus we obtain the explicit 
expressions 

3 3 

Yu’) (y, v, a.) = 
z 

c$Iq” (y, V)’ Y* (y. v, e) = 
c 

c0,i* (y, v) (2.14) 
i=O i=O 

(I+* (y, V, E) = lim @,I”‘(y, v, e), @I”’ (y, V, 0) = @)i* (y, V, 0) = (Di (y, V) 
P--S 

Y’P’(y, v, o)=Y*(y, \‘, O)=Y’O’(y, v) 

for the desired functions Y @)(y , v, E) for each step p and the limiting function Y * ( y , v, E) . 
We remark that the functions Y@) and Y * are differentiable with respect to v and E. The 

differentiation with respect to y leads to a factor O(vk), where k is the order of the derivative, since 
the dependence on y is realized as the product vy. 

Since the operators D and L are analytical with respect to E for 1 E 1 d Ed, the desired solution Y@) 
[the approximation with error O(E~+’ )] or Y * (the limit asp+ Q)) can be represented in the form of 
a finite sum or a uniformly convergent series in terms of the powers of E, respectively: 

7, 

Y(P) ‘= y(O) + 
I c E’Yl, (p > I), Y* = Y(O) + 2 EIY [ 

1=1 f=l 

(2.15) 

Y,=L,Y’O’ Y,=L2Y’O’+L,Y 
9 I,-**, Y,=LpY'o'+Lp-,Y,+. . .fL, Yp-, 

Id (y, V, E) .= 2 &I (y, V) 
l=l . 

d 
+ Cl(Y),,_, I 

Here Al(y), B[(y) and C,(y) are the coefficients of the Taylor expansions ofA(y, E), B(y, E) and 
C(y, E) in E. Analytic computations based on (2.15) may turn out to be much simpler than those 
carried out using the recurrent scheme (2.7) or (2.11), which is usually more suitable for numerical 
computations in specific cases. The substitution of Y @) and Y * into the boundary conditions (2.6), 
taking (1.11) into account leads to a transcendental secular (characteristic) equation for the 
unknown parameter v: 

A(p) (v, a) =A”) (v) +eI”P-I) (v, e) 10. r’-‘)~O (2.16) 

A* (y, a) SE A(‘)(v) + eI’+ (v, e) = 0, A* = lim Au’) 
P+m 

The desired approximate and limiting (“exact”) solutions of (2.16) can be constructed by means 
of a recurrence procedure of the form 

A’U’ (v, (‘))=-,~‘r-“(v,,“-“, e), 1=0, 1,. . . , p (2.17) 

A”’ (v, “J)=-eL?*(v,“-‘J, e). 1=0, 1. 2,. . . 

v I, lo)= arg A’“‘(v), n=O, zti, rt2,. . . , Iv,,(~‘(E)-v,,‘~‘~ Gee 

Iv,*(e)-v. ‘O’lGce, Iv,*(e)-v,‘*‘]GceP 

Here {v n co)} is the denumerable set of eigenvalues of the unperturbed boundary-value problem 
(for E = 0), which is assumed to be known. 

By analogy with Y@) and Y *, the expressions for the characteristic determinants A@) and A* and 
the eigenvalues v,‘J’) and v,* of the boundary-value problem can be expressed as sums or series in 
powers of E. On determining {A@)(e)} and {A*(E)} and substituting the results into (2.9) and (2.12), 
we obtain the desired systems of approximate eigenfunctions {Y,,@)} = {Xn’“‘} or limiting eigen- 
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functions {m*} = {Xn*} (y = x + ES) of the perturbed boundary value problem. The eigenfunctions 
have the properties of an orthogonal basis with appropriate weight: 

(Yll 9 (3,) Y$;')p = (X2", xg')x = 11 Y',"' I\,* 6,,", + o(E"+') - 11 x',"' 1ps,,, + O(eP+') 
(2.18) 

(Y,‘? Y”,I)V = (Xn*V X”,*)X = II y,* IlLI2 h”“, = II Xn2 Ilx” bl”, 

p=p(y, e)=i+ed(y+eq(y, e)), x=x(x, e)=l+di(s), pdy=xdz 

where (e, .)l*,x denotes the scalar product (the integral with respect to x, y E [0, l] with weight lo+ x, 
respectively), and where 11. Ilp,x are the weighted norms. We remark that in the case of a free rod, i.e. 
in the case of boundary condition 2 at both ends in (1. ll), zero is a double eigenvalue (A = v = 0) 
with two corresponding (non-orthogonal) eigenfunctions, which can be orthogonalized with weight 
x or p, respectively. 

3. SOLUTION OF THE PROBLEM OF THE CONTROLLED MOTION OF AN ELASTIC ROD 

On the basis of the systems of eigenvalues {An(&)}, A,, = v,l(l + E(P~) and orthonormalized 
eigenfunctions {Xn(x, &)},X,(X, ~)-y~(y( x E , ), ) E constructed with the given accuracy in terms of 
the small parameter E, the solutions of the boundary-value problems (1. l), (1.3)-(1.6) with the 
initial conditions (1.7) can be reduced, using the Fourier method and Hilbert’s approach [ll], to a 
denumerable system of ordinary differential equations 

m 

11. (t, Z) = 
r, 

8, (t) X,(z), 8,” + A,,%, = W, 0) + [- ((1 -t- ec) 4’ X,, + 
nr--OD 

+ (1 + ec) (dX'- u ',,) + u ((1 + EC)X")']:z; s Q,(t) (3.1) 

&=(u, X”)U W,=(W, XIJX 

e,(o)=f,o=(p, x,),, e,‘(o)=g,o=($, x,), 
(the dependence of U, X,,, 8,) and other functions on E is suppressed to simplify the notation). 
Taking into account the boundary conditions (1.3)-(1.6) for u (t, x) and (1.11) for X,,(x) for the 
given functions S,, 1 (t), Ko,1(t), Alo, 1 (t) and PO, 1 (t), 
sides Qn(t) = Q,“,‘) 

we obtain 10 forms of the known right-hand 
(t) = Q,“‘“(t) (i, j = 1, 2, 3, 4) for the denumerable system (3.1). Each of the 

initial-value problems has the elementary solution 
I 

e(i. i) __ 
n - fnO cos iL”‘t -t- g,,%,’ sin &It + A,” ’ 

\ 
sin hr,‘L (t -- t) Qi: ” (t) dT (3.2) . 

0 

In the case of the control problem, i.e. in the case when the conditions (1.8) are given for t = T, 
the control functions Q,ci,j) from an admissible class must be chosen in such a way that 8, (T) = fnT, 
O,‘( T)=gnT. The problems concerned with the existence of a solution of the control problem and 
the construction of the solution are rather difficult and merit a separate study. There is extensive 
literature devoted to these problems (see, for example, [12-191 and other references). 

4. FINDING THE EIGENFUNCTIONS AND EIGENVALUES IN THE FIRST 

APPROXIMATION FOR AN INHOMOGENEOUS ROD WITH HINGED SUPPORT 

We assume that the rod has a circular or rectangular cross-section (see the Fig. 1). Let r. be the 
inner radius and let r1 be the outer radius, or let a0 and b. be the dimensions of the inner rectangle 
and let u1 and bi be the dimensions of the outer rectangle. If the volume density pv and Young’s 
modulus E are constant, we obtain the corresponding expressions [l, 2,5] 
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p(x) =pvS(z), a(z)=E~(s) (4.1) 

for the linear density and bending stiffness, S being the surface area of the cross-section at x and I 
the moment of inertia about one of the main axes. In the case of a circular cross-section (Fig. la), we 
obtain 

S(z) =Jc(r,2(5) -r:(s)), I(s) =‘/*Jc(r,‘(z) 90‘(z) ) 

For a rectangular cross-section (Fig. lb), we have 

S(s)=a,(~)b,(z)-ue(z)b,(z), 

I,(z)=((a,(z)b,S(x)-a,(s)boS(s))/i2 

(1, is the moment about the y-axis). 

(4.2) 

(4.3) 

If we restrict ourselves only to the linear terms in the expansion in powers of E (in the case of a 
small variation of the parameters) and assume that the dimensions of the cross-section of the rod 
depend linearly on x, then, on the basis of (4.1)-(4.3), we obtain the following approximate 
expressions for the circular and rectangular cross-sections, respectively: 

p(r)=po(l+eGs)+O(e’), lJ(5)=CJ”(l+ecx)+O(eZ) (4.4) 

ro. I@) = r:, 1 $- Ed. 1x1 p. = rtpv (r,“% - roo2), u. = li,nE (rl”+ - roo4) 

a,, I (4 = 4, 1 + ea:. 9, b,, I (5) = 6:. , f eb:, +, p. - pv (aloh - aoob,“) 

ao--E(a,~b,~3-uo~bo~J)/12, 6=p"(a,~b,'-ao~bo'+a,'b,~-a"'b"")/p" 

C=E(3a,0b,0zb,'-3u0~b0~~bO'+u,'b,03-ao'bo~")/( 12U”) 

Equation (1.11) for the eigenfunctions X changes to 

( (l+ecs+O(eZ))X”)“-~4(lt~e6x+0(e’))X=0. O<.r<1 

The relations between y and x and between v and A take the simple forms 

y=.r+e(6-c)s(x-1)/8+0(e’) 

z=y+e(s-c)y(l-y)/s+O(e?), v=h(l+ecp,). (c,=(S-c)/S 

Moreover, we neglect the terms of order &2 in the equation for Y. 
Having applied the transformations from (2.4), we get 

Y”‘-v‘Y=eAY”‘, /I=-(c+38)/2 

to a first approximation. 

(4.5) 

(4.6) 

(4.7) 
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We shall find the solution of the perturbed problem in the linear approximation for a weakly 
inhomogeneous rod with hinged left end and free right end. The boundary conditions for the 
unperturbed initial-value problem (4.7) can be written as follows: 

Y]“=O=Y”]“=O, ,=Y”]y=;,=o (4.8) 

The solution of this problem is known and has the form 

Y j" (Y* V) k, = k, = 0, k, = - k, J; 
i=o 

(4.9) 

x*= (sh vf sin v) (ch vf cos v) 

where Qi are functions defined in (2.7) and vi can be found from the known transcendental equation 

shvcosv==chvsinv (thv=tgv) (4.10) 

vo- -0, v,,=*3,927, v,,=*7,069,. . . , v,,=f~/4fnll+O(e-*‘“‘“) 

One can prove that the solution of the first approximation of the perturbed problem (4.7) has the 
form 

Y(!/, v) = A&*ai(Y, V)(l+ +AY) (4.11) 

i=0 

for arbitrary boundary conditions. 
The boundary conditions (2.6) for the perturbed problem (a hinged attachment) can be written in 

the form 

YlY==O -0, [Y”(1+2e(B-cp,))+fNY’] luEo, ,=O (4.12) 

[Y”(1+3e(B-cp,))+3ee’Y”]J,,,=O 

where 8 = (6 - c)/4, as follows from (2.1). On transforming (4.12) using (2.2), we find that 

Y],=,-0, [ Y”+e(G-c) (Y’-Y”)/4] (y=o=O 

[y”+e(G-c) (Y’+Y”)/4] IY_,=O, 

(4.13) 

[Y”‘+3e(&c) (Y”+Y”‘/2)/4] IyE,= 

From (4.11) we can derive the following relations for the derivatives of Y with respect to y : 

Y~=~ki’(~;(*+;Ay)+tA~~) 
i=O 

(4.14) 

From the first condition in (4.13) it follows that kc* = 0. Substituting the values of Y and its 
derivatives from (4.11) and (4.14) into (4.13) and using the values of @‘i for y = 0 and y = 1, after 
some algebra we obtain the relations 

kl*~ek,+(6+c)/(24),‘(1, v)) (4.15) 

k,*= -ki*(Q)i”l@s”) (l+e(&+c)/(2@,‘)) ly=,=O 

expressing k2* and k3* in terms of kl* as well as the transcendental characteristic equation 

[Q),“’ -Q),“Q)s”‘/cD,“+e(6+c) (Q)Z”‘-Q)L”‘)/(2@Z’) ] (y=L=O (4.16) 
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In (4.16) we substitute the values of the derivatives of @‘i. After a number of trigonometric 
identity transformations, we get 

F,(v) +eF,(v) -0, F,(v) -ch v sin v-ah v COB v (4.17) 

F,(v)=(6+c)(l-chvcosv)/(2v) 

Since we seek the first approximation of the solution, we have 

v==vo+iW* (4.18) 

where v. are the eigenvalues of the unperturbed problem obtained from (4.9) and v1 can be found 
from (2.17): 

v, =-F, (Y,,),/F~,~(Y~), Fi,.(v,)=2sh v,sh v. (4.19) 

Substituting v1 from (4.18) and (4.19), k2* and k3* from (4.15), and ko* = 0 into (4.11), we can 
find the first approximations of the eigenfunctions Y,. Xl and XI can be determined from (2.2) and 
(2.3), where 

h,=v,( l-ecp,)=v, ,+e(v,. /-vo. ,(6-c)/8) (4.20) 

For example, in the case of a circular cross-section, if roe = ro’ = 0 (a solid rod), then we have 
6 = 2r111r10, c = 4rI’lr10, (6 + c) = 6rl'lr,0 and (6 - c) = -2r111r10. This means that the eigenvalues 
XI increase for 1% 1 (~r[ % q - 1 for l%== 1) in the case under consideration. For small I, the dependence 
is the following: 

1 1 2 3 4 5 
A:’ 3.927 7.069 10.21 13.35 16.49 

A,’ 1.385 1.978 2.699 3.450 4.214 

Here e = 0, 1 and rl'lrlo = 1. 
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